
Multimodal Transformers

Ken Gu

Jul 27, 2021

NOTES

1 Installation 3

2 Introduction by Example 5

3 Combine Methods 9

4 Colab Example 11

5 multimodal_transformers.model 13

6 multimodal_transformers.data 29

7 Indices and tables 35

Python Module Index 37

Index 39

i

ii

Multimodal Transformers

A toolkit for incorporating multimodal data on top of text data for classification and regression tasks. This toolkit is
heavily based off of HuggingFace Transformers. It adds a combining module that takes the outputs of the transform-
ers in addition to categorical and numerical features to produce rich multimodal features for downstream classifica-
tion/regression layers. Given a pretrained transformer, the parameters of the combining module and transformer are
trained based on the supervised task.

See its documentation for specific details regarding HuggingFace transformer models, configs, and tokenizers.

NOTES 1

https://huggingface.co/transformers/

Multimodal Transformers

2 NOTES

CHAPTER

ONE

INSTALLATION

This package was written with python3.7. It depends on PyTorch and HuggingFace Transformers 3.0. and up.

1.1 Install

pip install multimodal-transformers

3

https://pytorch.org/
https://huggingface.co/transformers/

Multimodal Transformers

4 Chapter 1. Installation

CHAPTER

TWO

INTRODUCTION BY EXAMPLE

This guide covers how to use the transformer with tabular models in your own project. We use a BertWithTabular
model as an example.

• How to Initialize Transformer With Tabular Models

• Forward Pass of Transformer With Tabular Models

• Modifications: Only One Type of Tabular Feature or No Tabular Features

• Inference

For a working script see the github repository.

2.1 How to Initialize Transformer With Tabular Models

The models which support tabular features are located in multimodal_transformers.model.
tabular_transformers. These adapted transformer modules expect the same transformer config instances
as the ones from HuggingFace. However, expect a multimodal_transformers.model.TabularConfig
instance specifying the configs.

Say for example we had categorical features of dim 9 and numerical features of dim 5.

from transformers import BertConfig

from multimodal_transformers.model import BertWithTabular
from multimodal_transformers.model import TabularConfig

bert_config = BertConfig.from_pretrained('bert-base-uncased')

tabular_config = TabularConfig(
combine_feat_method='attention_on_cat_and_numerical_feats', # change this to

→˓specify the method of combining tabular data
cat_feat_dim=9, # need to specify this
numerical_feat_dim=5, # need to specify this
num_labels=2, # need to specify this, assuming our task is binary

→˓classification
use_num_bn=False,

)

bert_config.tabular_config = tabular_config

(continues on next page)

5

https://github.com/georgianpartners/Multimodal-Toolkit

Multimodal Transformers

(continued from previous page)

model = BertWithTabular.from_pretrained('bert-base-uncased', config=bert_config)

In fact for any HuggingFace transformer model supported in multimodal_transformers.model.
tabular_transformers we can initialize it using multimodal_transformers.model.
AutoModelWithTabular to leverage any community trained transformer models

from transformers import AutoConfig

from multimodal_transformers.model import AutoModelWithTabular
from multimodal_transformers.model import TabularConfig

hf_config = AutoConfig.from_pretrained('ipuneetrathore/bert-base-cased-finetuned-
→˓finBERT')
tabular_config = TabularConfig(

combine_feat_method='attention_on_cat_and_numerical_feats', # change this to
→˓specify the method of combining tabular data

cat_feat_dim=9, # need to specify this
numerical_feat_dim=5, # need to specify this
num_labels=2, # need to specify this, assuming our task is binary

→˓classification
)
hf_config.tabular_config = tabular_config

model = AutoModelWithTabular.from_pretrained('ipuneetrathore/bert-base-cased-
→˓finetuned-finBERT', config=hf_config)

2.2 Forward Pass of Transformer With Tabular Models

During the forward pass we pass HuggingFace’s normal transformer inputs as well as our categorical and numerical
features.

The forward pass returns

• torch.FloatTensor of shape (1,): The classification (or regression if tabular_config.num_labels==1)
loss

• torch.FloatTensor of shape (batch_size, tabular_config.num_labels): The classifica-
tion (or regression if tabular_config.num_labels==1) scores (before SoftMax)

• list of torch.FloatTensor The outputs of each layer of the final classification layers. The 0th index of
this list is the combining module’s output

The following example shows a forward pass on two data examples

from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

text_1 = "HuggingFace is based in NYC"
text_2 = "Where is HuggingFace based?"
model_inputs = tokenizer([text_1, text_2])

5 numerical features
numerical_feat = torch.rand(2, 5).float()
9 categorical features

(continues on next page)

6 Chapter 2. Introduction by Example

https://huggingface.co/transformers/glossary.html

Multimodal Transformers

(continued from previous page)

categorical_feat = torch.tensor([[0, 0, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 1, 0, 0]]).float()

labels = torch.tensor([1, 0])

model_inputs['cat_feats'] = categorical_feat
model_inputs['num_feats'] = numerical_feat
model_inputs['labels'] = labels

loss, logits, layer_outs = model(**model_inputs)

We can also pass in the arguments explicitly

loss, logits, layer_outs = model(
model_inputs['input_ids'],
token_type_ids=model_inputs['token_type_ids'],
labels=labels,
cat_feats=categorical_feat,
numerical_feats=numerical_feat

)

2.3 Modifications: Only One Type of Tabular Feature or No Tabular
Features

If there are no tabular features, the models basically default to the ForSequenceClassification models from Hugging-
Face. We must specify combine_feat_method='text_only' in multimodal_transformers.model.
TabularConfig. During the forward pass we can simply pass the text related inputs

loss, logits, layer_outs = model(
model_inputs['input_ids'],
token_type_ids=model_inputs['token_type_ids'],
labels=labels,

)

If only one of the features is available, we first must specify a combine_feat_method that supports only one
type of feature available. See supported methods for more details. When initializing our tabular config we specify the
dimensions of the feature we have. For example if we only have categorical features

tabular_config = TabularConfig(
combine_feat_method='attention_on_cat_and_numerical_feats', # change this to

→˓specify the method of combining tabular data
cat_feat_dim=9, # need to specify this
num_labels=2, # need to specify this, assuming our task is binary classification

)

During the forward pass, we also pass only the tabular data that we have.

loss, logits, layer_outs = model(
model_inputs['input_ids'],
token_type_ids=model_inputs['token_type_ids'],
labels=labels,
cat_feats=categorical_feat,

)

2.3. Modifications: Only One Type of Tabular Feature or No Tabular Features 7

Multimodal Transformers

2.4 Inference

During inference we do not need to pass the labels and we can take the logits from the second output from the forward
pass of the model.

with torch.no_grad():
_, logits, classifier_outputs = model(

model_inputs['input_ids'],
token_type_ids=model_inputs['token_type_ids'],
cat_feats=categorical_feat,
numerical_feats=numerical_feat

)

8 Chapter 2. Introduction by Example

CHAPTER

THREE

COMBINE METHODS

This page explains the methods that are supported by multimodal_transformers.tabular_combiner.
TabularFeatCombiner. See the table for details.

If you have rich categorical and numerical features any of the attention, gating, or weighted sum methods
are worth trying.

The following describes each supported method and whether or not it requires both categorical and numerical features.

This table shows the the equations involved with each method. First we define some notation

• equation denotes the combined multimodal features

• equation denotes the output text features from the transformer

• equation denotes the categorical features

• equation denotes the numerical features

• equation denotes a MLP parameterized by equation

• equation denotes a weight matrix

• equation denotes a scalar bias

9

Multimodal Transformers

10 Chapter 3. Combine Methods

CHAPTER

FOUR

COLAB EXAMPLE

Here is an example of a colab notebook for running the toolkit involving data preparation, training, and evaluation:

1. Training a BertWithTabular Model for Clothing Review Recommendation Prediction

11

https://colab.research.google.com/github/georgianpartners/Multimodal-Toolkit/blob/master/notebooks/text_w_tabular_classification.ipynb

Multimodal Transformers

12 Chapter 4. Colab Example

CHAPTER

FIVE

MULTIMODAL_TRANSFORMERS.MODEL

Contents

• Tabular Feature Combiner

• Tabular Config

• AutoModel with Tabular

• Transformers with Tabular

5.1 Tabular Feature Combiner

class TabularFeatCombiner(tabular_config)
Bases: torch.nn.modules.module.Module

Combiner module for combining text features with categorical and numerical features The methods
of combining, specified by tabular_config.combine_feat_method are shown below. m
denotes the combined multimodal features, x denotes the output text features from the transformer, c
denotes the categorical features, t denotes the numerical features, ℎΘ denotes a MLP parameterized
by Θ, 𝑊 denotes a weight matrix, and 𝑏 denotes a scalar bias

• text_only

m = x

• concat

m = x ‖ c ‖n

• mlp_on_categorical_then_concat

m = x ‖ℎΘ(c) ‖n

• individual_mlps_on_cat_and_numerical_feats_then_concat

13

Multimodal Transformers

m = x ‖ℎΘc(c) ‖ℎΘn(n)

• mlp_on_concatenated_cat_and_numerical_feats_then_concat

m = x ‖ℎΘ(c ‖n)

• attention_on_cat_and_numerical_feats self attention on the text features

m = 𝛼𝑥,𝑥W𝑥x + 𝛼𝑥,𝑐W𝑐c + 𝛼𝑥,𝑛W𝑛n

where W𝑥 is of shape (out_dim, text_feat_dim), W𝑐 is of shape (out_dim,
cat_feat_dim), W𝑛 is of shape (out_dim, num_feat_dim), and the attention co-
efficients 𝛼𝑖,𝑗 are computed as

𝛼𝑖,𝑗 =
exp

(︀
LeakyReLU

(︀
a⊤[W𝑖x𝑖 ‖W𝑗x𝑗]

)︀)︀∑︀
𝑘∈{𝑥,𝑐,𝑛} exp (LeakyReLU (a⊤[W𝑖x𝑖 ‖W𝑘x𝑘]))

.

• gating_on_cat_and_num_feats_then_sum sum of features gated by text features. Inspired by
the gating mechanism introduced in Integrating Multimodal Information in Large Pretrained
Transformers

m = x + 𝛼h

h = gc ⊙ (W𝑐c) + gn ⊙ (W𝑛n) + 𝑏ℎ

𝛼 = min(
‖x‖2
‖h‖2

* 𝛽, 1)

where 𝛽 is a hyperparamter, W𝑐 is of shape (out_dim, cat_feat_dim), W𝑛 is of shape
(out_dim, num_feat_dim). and the gating vector g𝑖 with activation function 𝑅 is defined
as

g𝑖 = 𝑅(W𝑔𝑖[i ‖x] + 𝑏𝑖)

where W𝑔𝑖 is of shape (out_dim, i_feat_dim + text_feat_dim)

• weighted_feature_sum_on_transformer_cat_and_numerical_feats

m = x + W𝑐′ ⊙W𝑐c + W𝑛′ ⊙W𝑛t

Parameters tabular_config (TabularConfig) – Tabular model configuration class with all
the parameters of the model.

14 Chapter 5. multimodal_transformers.model

https://www.aclweb.org/anthology/2020.acl-main.214.pdf
https://www.aclweb.org/anthology/2020.acl-main.214.pdf

Multimodal Transformers

forward(text_feats, cat_feats=None, numerical_feats=None)

Parameters

• text_feats (torch.FloatTensor of shape (batch_size,
text_out_dim)) – The tensor of text features. This is assumed to be the output
from a HuggingFace transformer model

• cat_feats (torch.FloatTensor of shape (batch_size, cat_feat_dim),
optional, defaults to None)) – The tensor of categorical features

• numerical_feats (torch.FloatTensor of shape (batch_size,
numerical_feat_dim), optional, defaults to None) – The tensor of numerical
features

Returns A tensor representing the combined features

Return type torch.FloatTensor of shape (batch_size, final_out_dim)

5.2 Tabular Config

class TabularConfig(num_labels, mlp_division=4, combine_feat_method='text_only',
mlp_dropout=0.1, numerical_bn=True, use_simple_classifier=True,
mlp_act='relu', gating_beta=0.2, numerical_feat_dim=0, cat_feat_dim=0,
**kwargs)

Bases: object

Config used for tabular combiner

Parameters

• mlp_division (int) – how much to decrease each MLP dim for each additional layer

• combine_feat_method (str) – The method to combine categorical and numerical
features. See TabularFeatCombiner for details on the supported methods.

• mlp_dropout (float) – dropout ratio used for MLP layers

• numerical_bn (bool) – whether to use batchnorm on numerical features

• use_simple_classifier (bool) – whether to use single layer or MLP as final clas-
sifier

• mlp_act (str) – the activation function to use for finetuning layers

• gating_beta (float) – the beta hyperparameters used for gating tabular data see the
paper Integrating Multimodal Information in Large Pretrained Transformers for details

• numerical_feat_dim (int) – the number of numerical features

• cat_feat_dim (int) – the number of categorical features

5.2. Tabular Config 15

https://www.aclweb.org/anthology/2020.acl-main.214.pdf

Multimodal Transformers

5.3 AutoModel with Tabular

class AutoModelWithTabular
Bases: object

classmethod from_config(config)
Instantiates one of the base model classes of the library from a configuration.

Note: Only the models in multimodal_transformers.py are implemented

Parameters config (PretrainedConfig) –

The model class to instantiate is selected based on the configuration class: see multi-
modal_transformers.py for supported transformer models

Examples:

config = BertConfig.from_pretrained('bert-base-uncased') # Download
→˓configuration from S3 and cache.
model = AutoModelWithTabular.from_config(config) # E.g. model was saved
→˓using `save_pretrained('./test/saved_model/')`

classmethod from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
Instantiates one of the sequence classification model classes of the library from a pre-trained model con-
figuration. See multimodal_transformers.py for supported transformer models

The from_pretrained() method takes care of returning the correct model class instance based on the
model_type property of the config object, or when it’s missing, falling back to using pattern matching
on the pretrained_model_name_or_path string:

The model is set in evaluation mode by default using model.eval() (Dropout modules are deactivated) To
train the model, you should first set it back in training mode with model.train()

Parameters

• pretrained_model_name_or_path – either:

– a string with the shortcut name of a pre-trained model to load from cache or download,
e.g.: bert-base-uncased.

– a string with the identifier name of a pre-trained model that was user-uploaded to our
S3, e.g.: dbmdz/bert-base-german-cased.

– a path to a directory containing model weights saved using save_pretrained(),
e.g.: ./my_model_directory/.

– a path or url to a tensorflow index checkpoint file (e.g. ./tf_model/model.ckpt.index). In
this case, from_tf should be set to True and a configuration object should be provided
as config argument. This loading path is slower than converting the TensorFlow
checkpoint in a PyTorch model using the provided conversion scripts and loading the
PyTorch model afterwards.

• model_args – (optional) Sequence of positional arguments: All remaining positional
arguments will be passed to the underlying model’s __init__ method

• config – (optional) instance of a class derived from PretrainedConfig: Configu-
ration for the model to use instead of an automatically loaded configuation. Configuration
can be automatically loaded when:

16 Chapter 5. multimodal_transformers.model

Multimodal Transformers

– the model is a model provided by the library (loaded with the shortcut-name string
of a pretrained model), or

– the model was saved using save_pretrained() and is reloaded by suppling the
save directory.

– the model is loaded by suppling a local directory as
pretrained_model_name_or_path and a configuration JSON file named
config.json is found in the directory.

• state_dict – (optional) dict: an optional state dictionary for the model to use instead
of a state dictionary loaded from saved weights file. This option can be used if you want
to create a model from a pretrained configuration but load your own weights. In this case
though, you should check if using save_pretrained() and from_pretrained()
is not a simpler option.

• cache_dir – (optional) string: Path to a directory in which a downloaded pre-trained
model configuration should be cached if the standard cache should not be used.

• force_download – (optional) boolean, default False: Force to (re-)download the
model weights and configuration files and override the cached versions if they exists.

• resume_download – (optional) boolean, default False: Do not delete incompletely
recieved file. Attempt to resume the download if such a file exists.

• proxies – (optional) dict, default None: A dictionary of proxy servers to use by protocol
or endpoint, e.g.: {‘http’: ‘foo.bar:3128’, ‘http://hostname’: ‘foo.bar:4012’}. The proxies
are used on each request.

• output_loading_info – (optional) boolean: Set to True to also return a dictionary
containing missing keys, unexpected keys and error messages.

• kwargs – (optional) Remaining dictionary of keyword arguments: These arguments will
be passed to the configuration and the model.

Examples:

model = AutoModelWithTabular.from_pretrained('bert-base-uncased') #
→˓Download model and configuration from S3 and cache.
model = AutoModelWithTabular.from_pretrained('./test/bert_model/') # E.g.
→˓model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelWithTabular.from_pretrained('./tf_model/bert_tf_checkpoint.
→˓ckpt.index', from_tf=True, config=config)

5.4 Transformers with Tabular

class AlbertWithTabular(hf_model_config)
Bases: transformers.modeling_albert.AlbertForSequenceClassification

ALBERT Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner
module to combine categorical and numerical features with the Roberta pooled output

Parameters hf_model_config (AlbertConfig) – Model configuration class with all the pa-
rameters of the model. This object must also have a tabular_config member variable that is a
TabularConfig instance specifying the configs for TabularFeatCombiner

5.4. Transformers with Tabular 17

Multimodal Transformers

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None,
head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, out-
put_hidden_states=None, return_dict=None, class_weights=None, cat_feats=None, numeri-
cal_feats=None)

The AlbertWithTabular forward method, overrides the __call__() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call
the Module instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size,
sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.AlbertTokenizer. See
transformers.PreTrainedTokenizer.encode() and transformers.
PreTrainedTokenizer() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that
are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

• token_type_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Segment token indices to in-
dicate first and second portions of the inputs. Indices are selected in [0, 1]: 0
corresponds to a sentence A token, 1 corresponds to a sentence B token

What are token type IDs?

• position_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Indices of positions of each
input sequence tokens in the position embeddings. Selected in the range [0, config.
max_position_embeddings - 1].

What are position IDs?

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers,
num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-
attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked,
0 indicates the head is masked.

• inputs_embeds (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Option-
ally, instead of passing input_ids you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.

• output_attentions (bool, optional, defaults to None) – If set to True, the atten-
tions tensors of all attention layers are returned. See attentions under returned tensors
for more detail.

• labels (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Labels for computing the sequence classification/regression loss. Indices should

18 Chapter 5. multimodal_transformers.model

../glossary.html#input-ids
../glossary.html#attention-mask
../glossary.html#token-type-ids
../glossary.html#position-ids

Multimodal Transformers

be in [0, ..., config.num_labels - 1]. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a
classification loss is computed (Cross-Entropy).

class BertWithTabular(hf_model_config)
Bases: transformers.modeling_bert.BertForSequenceClassification

Bert Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module
to combine categorical and numerical features with the Bert pooled output

Parameters hf_model_config (BertConfig) – Model configuration class with all the pa-
rameters of the model. This object must also have a tabular_config member variable that is a
TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None,
head_mask=None, inputs_embeds=None, labels=None, class_weights=None, out-
put_attentions=None, output_hidden_states=None, cat_feats=None, numerical_feats=None)

The BertWithTabular forward method, overrides the __call__() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call
the Module instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size,
sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.BertTokenizer. See
transformers.PreTrainedTokenizer.encode() and transformers.
PreTrainedTokenizer.__call__() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that
are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

• token_type_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Segment token indices to in-
dicate first and second portions of the inputs. Indices are selected in [0, 1]: 0
corresponds to a sentence A token, 1 corresponds to a sentence B token

What are token type IDs?

• position_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Indices of positions of each
input sequence tokens in the position embeddings. Selected in the range [0, config.
max_position_embeddings - 1].

What are position IDs?

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers,
num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-
attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked,
0 indicates the head is masked.

5.4. Transformers with Tabular 19

../glossary.html#input-ids
../glossary.html#attention-mask
../glossary.html#token-type-ids
../glossary.html#position-ids

Multimodal Transformers

• inputs_embeds (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Option-
ally, instead of passing input_ids you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.

• encoder_hidden_states (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.

• encoder_attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing attention
on the padding token indices of the encoder input. This mask is used in the cross-attention
if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens
that are NOT MASKED, 0 for MASKED tokens.

• output_attentions (bool, optional, defaults to None) – If set to True, the atten-
tions tensors of all attention layers are returned. See attentions under returned tensors
for more detail.

• class_weights (torch.FloatTensor of shape (tabular_config.
num_labels,), optional, defaults to None) – Class weights to be used for cross
entropy loss function for classification task

• labels (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Labels for computing the sequence classification/regression loss. Indices
should be in [0, ..., config.num_labels - 1]. If tabular_config.
num_labels == 1 a regression loss is computed (Mean-Square loss), If
tabular_config.num_labels > 1 a classification loss is computed (Cross-
Entropy).

• cat_feats (torch.FloatTensor of shape (batch_size,
tabular_config.cat_feat_dim), optional, defaults to None) – Categori-
cal features to be passed in to the TabularFeatCombiner

• numerical_feats (torch.FloatTensor of shape (batch_size,
tabular_config.numerical_feat_dim), optional, defaults to None) –
Numerical features to be passed in to the TabularFeatCombiner

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when label is provided):
Classification (or regression if tabular_config.num_labels==1) loss.

logits (torch.FloatTensor of shape (batch_size, tabular_config.num_labels)):
Classification (or regression if tabular_config.num_labels==1) scores (before SoftMax).

classifier_layer_outputs(list of torch.FloatTensor): The outputs of each layer of
the final classification layers. The 0th index of this list is the combining module’s output

Return type tuple comprising various elements depending on configuration and inputs

class DistilBertWithTabular(hf_model_config)
Bases: transformers.modeling_distilbert.DistilBertForSequenceClassification

DistilBert Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner
module to combine categorical and numerical features with the Roberta pooled output

20 Chapter 5. multimodal_transformers.model

Multimodal Transformers

Parameters hf_model_config (DistilBertConfig) – Model configuration class with all
the parameters of the model. This object must also have a tabular_config member variable that
is a TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, la-
bels=None, output_attentions=None, output_hidden_states=None, class_weights=None,
cat_feats=None, numerical_feats=None)

The DistilBertWithTabular forward method, overrides the __call__() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call
the Module instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size,
sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.DistilBertTokenizer. See
transformers.PreTrainedTokenizer.encode() and transformers.
PreTrainedTokenizer.__call__() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that
are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers,
num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-
attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked,
0 indicates the head is masked.

• inputs_embeds (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Option-
ally, instead of passing input_ids you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.

• output_attentions (bool, optional, defaults to None) – If set to True, the atten-
tions tensors of all attention layers are returned. See attentions under returned tensors
for more detail.

• class_weights (torch.FloatTensor of shape (tabular_config.
num_labels,),`optional`, defaults to None) – Class weights to be used for cross
entropy loss function for classification task

• labels (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Labels for computing the sequence classification/regression loss. Indices
should be in [0, ..., config.num_labels - 1]. If tabular_config.
num_labels == 1 a regression loss is computed (Mean-Square loss), If
tabular_config.num_labels > 1 a classification loss is computed (Cross-
Entropy).

5.4. Transformers with Tabular 21

../glossary.html#input-ids
../glossary.html#attention-mask

Multimodal Transformers

• cat_feats (torch.FloatTensor of shape (batch_size,
tabular_config.cat_feat_dim),`optional`, defaults to None) – Categori-
cal features to be passed in to the TabularFeatCombiner

• numerical_feats (torch.FloatTensor of shape (batch_size,
tabular_config.numerical_feat_dim),`optional`, defaults to None) –
Numerical features to be passed in to the TabularFeatCombiner

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when label is provided):
Classification (or regression if tabular_config.num_labels==1) loss.

logits (torch.FloatTensor of shape (batch_size, tabular_config.num_labels)):
Classification (or regression if tabular_config.num_labels==1) scores (before SoftMax).

classifier_layer_outputs(list of torch.FloatTensor): The outputs of each layer of
the final classification layers. The 0th index of this list is the combining module’s output

Return type tuple comprising various elements depending on configuration and inputs

class RobertaWithTabular(hf_model_config)
Bases: transformers.modeling_roberta.RobertaForSequenceClassification

Roberta Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner
module to combine categorical and numerical features with the Roberta pooled output

Parameters hf_model_config (RobertaConfig) – Model configuration class with all the
parameters of the model. This object must also have a tabular_config member variable that is a
TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None,
head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, out-
put_hidden_states=None, class_weights=None, cat_feats=None, numerical_feats=None)

The RobertaWithTabular forward method, overrides the __call__() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call
the Module instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size,
sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.RobertaTokenizer. See
transformers.PreTrainedTokenizer.encode() and transformers.
PreTrainedTokenizer.__call__() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that
are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

22 Chapter 5. multimodal_transformers.model

../glossary.html#input-ids
../glossary.html#attention-mask

Multimodal Transformers

• token_type_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Segment token indices to in-
dicate first and second portions of the inputs. Indices are selected in [0, 1]: 0
corresponds to a sentence A token, 1 corresponds to a sentence B token

What are token type IDs?

• position_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Indices of positions of each
input sequence tokens in the position embeddings. Selected in the range [0, config.
max_position_embeddings - 1].

What are position IDs?

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers,
num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-
attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked,
0 indicates the head is masked.

• inputs_embeds (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Option-
ally, instead of passing input_ids you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.

• output_attentions (bool, optional, defaults to None) – If set to True, the atten-
tions tensors of all attention layers are returned. See attentions under returned tensors
for more detail.

• class_weights (torch.FloatTensor of shape (tabular_config.
num_labels,), optional, defaults to None) – Class weights to be used for cross
entropy loss function for classification task

• labels (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Labels for computing the sequence classification/regression loss. Indices
should be in [0, ..., config.num_labels - 1]. If tabular_config.
num_labels == 1 a regression loss is computed (Mean-Square loss), If
tabular_config.num_labels > 1 a classification loss is computed (Cross-
Entropy).

• cat_feats (torch.FloatTensor of shape (batch_size,
tabular_config.cat_feat_dim), optional, defaults to None) – Categori-
cal features to be passed in to the TabularFeatCombiner

• numerical_feats (torch.FloatTensor of shape (batch_size,
tabular_config.numerical_feat_dim), optional, defaults to None) –
Numerical features to be passed in to the TabularFeatCombiner

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when label is provided):
Classification (or regression if tabular_config.num_labels==1) loss.

logits (torch.FloatTensor of shape (batch_size, tabular_config.num_labels)):
Classification (or regression if tabular_config.num_labels==1) scores (before SoftMax).

classifier_layer_outputs(list of torch.FloatTensor): The outputs of each layer of
the final classification layers. The 0th index of this list is the combining module’s output

Return type tuple comprising various elements depending on configuration and inputs

5.4. Transformers with Tabular 23

../glossary.html#token-type-ids
../glossary.html#position-ids

Multimodal Transformers

class XLMRobertaWithTabular(hf_model_config)
Bases: multimodal_transformers.model.tabular_transformers.RobertaWithTabular

This class overrides RobertaWithTabular. Please check the superclass for the appropriate documentation
alongside usage examples.

config_class
alias of transformers.configuration_xlm_roberta.XLMRobertaConfig

class XLMWithTabular(hf_model_config)
Bases: transformers.modeling_xlm.XLMForSequenceClassification

XLM Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner mod-
ule to combine categorical and numerical features with the Roberta pooled output

Parameters hf_model_config (XLMConfig) – Model configuration class with all the param-
eters of the model. This object must also have a tabular_config member variable that is a
TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, posi-
tion_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None,
labels=None, output_attentions=None, output_hidden_states=None, return_dict=None,
class_weights=None, cat_feats=None, numerical_feats=None)

The XLMWithTabular forward method, overrides the __call__() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call
the Module instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size,
sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.BertTokenizer. See
transformers.PreTrainedTokenizer.encode() and transformers.
PreTrainedTokenizer.__call__() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that
are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

• langs (torch.LongTensor of shape (batch_size, sequence_length),
optional, defaults to None) – A parallel sequence of tokens to be used to indicate the
language of each token in the input. Indices are languages ids which can be obtained from
the language names by using two conversion mappings provided in the configuration of
the model (only provided for multilingual models). More precisely, the language name
-> language id mapping is in model.config.lang2id (dict str -> int) and the language id ->
language name mapping is model.config.id2lang (dict int -> str).

See usage examples detailed in the multilingual documentation.

• token_type_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Segment token indices to in-

24 Chapter 5. multimodal_transformers.model

../glossary.html#input-ids
../glossary.html#attention-mask
https://huggingface.co/transformers/multilingual.html

Multimodal Transformers

dicate first and second portions of the inputs. Indices are selected in [0, 1]: 0
corresponds to a sentence A token, 1 corresponds to a sentence B token

What are token type IDs?

• position_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Indices of positions of each
input sequence tokens in the position embeddings. Selected in the range [0, config.
max_position_embeddings - 1].

What are position IDs?

• lengths (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Length of each sentence that can be used to avoid performing attention on
padding token indices. You can also use attention_mask for the same result (see above),
kept here for compatbility. Indices selected in [0, ..., input_ids.size(-1)]:

• cache (Dict[str, torch.FloatTensor], optional, defaults to None) – dictio-
nary with torch.FloatTensor that contains pre-computed hidden-states (key and
values in the attention blocks) as computed by the model (see cache output below). Can
be used to speed up sequential decoding. The dictionary object will be modified in-place
during the forward pass to add newly computed hidden-states.

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers,
num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-
attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked,
0 indicates the head is masked.

• inputs_embeds (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Option-
ally, instead of passing input_ids you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.

• output_attentions (bool, optional, defaults to None) – If set to True, the atten-
tions tensors of all attention layers are returned. See attentions under returned tensors
for more detail.

• labels (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Labels for computing the sequence classification/regression loss. Indices should
be in [0, ..., config.num_labels - 1]. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a
classification loss is computed (Cross-Entropy).

class XLNetWithTabular(hf_model_config)
Bases: transformers.modeling_xlnet.XLNetForSequenceClassification

XLNet Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner
module to combine categorical and numerical features with the Roberta pooled output

Parameters hf_model_config (XLNetConfig) – Model configuration class with all the pa-
rameters of the model. This object must also have a tabular_config member variable that is a
TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, tar-
get_mapping=None, token_type_ids=None, input_mask=None, head_mask=None,
inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, out-
put_hidden_states=None, return_dict=None, class_weights=None, cat_feats=None, numeri-
cal_feats=None)

The XLNetWithTabular forward method, overrides the __call__() special method.

5.4. Transformers with Tabular 25

../glossary.html#token-type-ids
../glossary.html#position-ids

Multimodal Transformers

Note: Although the recipe for forward pass needs to be defined within this function, one should call
the Module instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size,
sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.BertTokenizer. See
transformers.PreTrainedTokenizer.encode() and transformers.
PreTrainedTokenizer.__call__() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that
are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

• mems (List[torch.FloatTensor] of length config.n_layers) – Contains
pre-computed hidden-states (key and values in the attention blocks) as computed by the
model (see mems output below). Can be used to speed up sequential decoding. The token
ids which have their mems given to this model should not be passed as input ids as they
have already been computed. use_cache has to be set to True to make use of mems.

• perm_mask (torch.FloatTensor of shape (batch_size,
sequence_length, sequence_length), optional, defaults to None) – Mask to
indicate the attention pattern for each input token with values selected in [0, 1]: If
perm_mask[k, i, j] = 0, i attend to j in batch k; if perm_mask[k, i, j]
= 1, i does not attend to j in batch k. If None, each token attends to all the others (full
bidirectional attention). Only used during pretraining (to define factorization order) or for
sequential decoding (generation).

• target_mapping (torch.FloatTensor of shape (batch_size,
num_predict, sequence_length), optional, defaults to None) – Mask to
indicate the output tokens to use. If target_mapping[k, i, j] = 1, the i-th
predict in batch k is on the j-th token. Only used during pretraining for partial prediction
or for sequential decoding (generation).

• token_type_ids (torch.LongTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Segment token indices to in-
dicate first and second portions of the inputs. Indices are selected in [0, 1]: 0
corresponds to a sentence A token, 1 corresponds to a sentence B token. The classifier
token should be represented by a 2.

What are token type IDs?

• input_mask (torch.FloatTensor of shape (batch_size,
sequence_length), optional, defaults to None) – Mask to avoid performing
attention on padding token indices. Negative of attention_mask, i.e. with 0 for real tokens
and 1 for padding. Kept for compatibility with the original code base. You can only uses
one of input_mask and attention_mask Mask values selected in [0, 1]: 1 for tokens
that are MASKED, 0 for tokens that are NOT MASKED.

26 Chapter 5. multimodal_transformers.model

../glossary.html#input-ids
../glossary.html#attention-mask
../glossary.html#token-type-ids

Multimodal Transformers

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers,
num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-
attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked,
0 indicates the head is masked.

• inputs_embeds (torch.FloatTensor of shape (batch_size,
sequence_length, hidden_size), optional, defaults to None) – Option-
ally, instead of passing input_ids you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.

• use_cache (bool) – If use_cache is True, mems are returned and can be used to speed
up decoding (see mems). Defaults to True.

• output_attentions (bool, optional, defaults to None) – If set to True, the atten-
tions tensors of all attention layers are returned. See attentions under returned tensors
for more detail.

• labels (torch.LongTensor of shape (batch_size,), optional, defaults to
None) – Labels for computing the sequence classification/regression loss. Indices should
be in [0, ..., config.num_labels - 1]. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a
classification loss is computed (Cross-Entropy).

5.4. Transformers with Tabular 27

Multimodal Transformers

28 Chapter 5. multimodal_transformers.model

CHAPTER

SIX

MULTIMODAL_TRANSFORMERS.DATA

The data module includes two functions to help load your own datasets into multimodal_transformers.
data.tabular_torch_dataset.TorchTabularTextDataset which can be fed into a torch.
utils.data.DataLoader. The multimodal_transformers.data.tabular_torch_dataset.
TorchTabularTextDataset’s __getitem__ method’s outputs can be directly fed to the forward pass to a
model in multimodal_transformers.model.tabular_transformers.

Note: You may still need to move the __getitem__ method outputs to the right gpu device.

6.1 Module contents

class TorchTabularTextDataset(encodings, categorical_feats, numerical_feats, labels=None,
df=None, label_list=None, class_weights=None)

Bases: torch.utils.data.dataset.Dataset

TorchDataset wrapper for text dataset with categorical features and numerical features

Parameters

• encodings (transformers.BatchEncoding) – The output from en-
code_plus() and batch_encode() methods (tokens, attention_masks, etc) of a trans-
formers.PreTrainedTokenizer

• categorical_feats (numpy.ndarray, of shape (n_examples,
categorical feat dim), optional, defaults to None) – An array containing
the preprocessed categorical features

• numerical_feats (numpy.ndarray, of shape (n_examples, numerical
feat dim), optional, defaults to None) – An array containing the preprocessed numerical
features

• ((labels) – class: list` or numpy.ndarray, optional, defaults to None): The labels of the
training examples

• class_weights (numpy.ndarray, of shape (n_classes), optional, defaults to None)
– Class weights used for cross entropy loss for classification

• df (pandas.DataFrame, optional, defaults to None) – Model configuration class with
all the parameters of the model. This object must also have a tabular_config member variable
that is a TabularConfig instance specifying the configs for TabularFeatCombiner

get_labels()
returns the label names for classification

29

Multimodal Transformers

load_data(data_df, text_cols, tokenizer, label_col, label_list=None, categorical_cols=None,
numerical_cols=None, sep_text_token_str=' ', categorical_encode_type='ohe', nu-
merical_transformer=None, empty_text_values=None, replace_empty_text=None,
max_token_length=None, debug=False)

Function to load a single dataset given a pandas DataFrame

Given a DataFrame, this function loads the data to a torch_dataset.TorchTextDataset object which
can be used in a torch.utils.data.DataLoader.

Parameters

• data_df (pd.DataFrame) – The DataFrame to convert to a TorchTextDataset

• text_cols (list of str) – the column names in the dataset that contain text from which
we want to load

• tokenizer (transformers.tokenization_utils.
PreTrainedTokenizer) – HuggingFace tokenizer used to tokenize the input
texts as specifed by text_cols

• label_col (str) – The column name of the label, for classification the column should
have int values from 0 to n_classes-1 as the label for each class. For regression the column
can have any numerical value

• label_list (list of str, optional) – Used for classification; the names of the classes
indexed by the values in label_col.

• categorical_cols (list of str, optional) – The column names in the dataset that
contain categorical features. The features can be already prepared numerically, or could be
preprocessed by the method specified by categorical_encode_type

• numerical_cols (list of str, optional) – The column names in the dataset that con-
tain numerical features. These columns should contain only numeric values.

• sep_text_token_str (str, optional) – The string token that is used to separate
between the different text columns for a given data example. For Bert for example, this
could be the [SEP] token.

• categorical_encode_type (str, optional) – Given categorical_cols, this
specifies what method we want to preprocess our categorical features. choices: [‘ohe’,
‘binary’, None] see encode_features.CategoricalFeatures for more details

• numerical_transformer (sklearn.base.TransformerMixin) – The sklearn
numeric transformer instance to transform our numerical features

• empty_text_values (list of str, optional) – Specifies what texts should be consid-
ered as missing which would be replaced by replace_empty_text

• replace_empty_text (str, optional) – The value of the string that will replace
the texts that match with those in empty_text_values. If this argument is None then the text
that match with empty_text_values will be skipped

• max_token_length (int, optional) – The token length to pad or truncate to on
the input text

• debug (bool, optional) – Whether or not to load a smaller debug version of the
dataset

Returns The converted dataset

Return type tabular_torch_dataset.TorchTextDataset

30 Chapter 6. multimodal_transformers.data

Multimodal Transformers

load_data_from_folder(folder_path, text_cols, tokenizer, label_col, label_list=None, categori-
cal_cols=None, numerical_cols=None, sep_text_token_str=' ', categori-
cal_encode_type='ohe', numerical_transformer_method='quantile_normal',
empty_text_values=None, replace_empty_text=None,
max_token_length=None, debug=False)

Function to load tabular and text data from a specified folder

Loads train, test and/or validation text and tabular data from specified folder path into TorchTextDataset class
and does categorical and numerical data preprocessing if specified. Inside the folder, there is expected to be a
train.csv, and test.csv (and if given val.csv) containing the training, testing, and validation sets respectively

Parameters

• folder_path (str) – The path to the folder containing train.csv, and test.csv (and if
given val.csv)

• text_cols (list of str) – The column names in the dataset that contain text from
which we want to load

• tokenizer (transformers.tokenization_utils.
PreTrainedTokenizer) – HuggingFace tokenizer used to tokenize the input
texts as specifed by text_cols

• label_col (str) – The column name of the label, for classification the column should
have int values from 0 to n_classes-1 as the label for each class. For regression the column
can have any numerical value

• label_list (list of str, optional) – Used for classification; the names of the classes
indexed by the values in label_col.

• categorical_cols (list of str, optional) – The column names in the dataset that
contain categorical features. The features can be already prepared numerically, or could be
preprocessed by the method specified by categorical_encode_type

• numerical_cols (list of str, optional) – The column names in the dataset that con-
tain numerical features. These columns should contain only numeric values.

• sep_text_token_str (str, optional) – The string token that is used to separate
between the different text columns for a given data example. For Bert for example, this
could be the [SEP] token.

• categorical_encode_type (str, optional) – Given categorical_cols, this
specifies what method we want to preprocess our categorical features. choices: [‘ohe’,
‘binary’, None] see encode_features.CategoricalFeatures for more details

• numerical_transformer_method (str, optional) – Given numerical_cols,
this specifies what method we want to use for normalizing our numerical data. choices:
[‘yeo_johnson’, ‘box_cox’, ‘quantile_normal’, None] see https://scikit-learn.org/stable/
auto_examples/preprocessing/plot_all_scaling.html for more details

• empty_text_values (list of str, optional) – specifies what texts should be consid-
ered as missing which would be replaced by replace_empty_text

• replace_empty_text (str, optional) – The value of the string that will replace
the texts that match with those in empty_text_values. If this argument is None then the text
that match with empty_text_values will be skipped

• max_token_length (int, optional) – The token length to pad or truncate to on
the input text

• debug (bool, optional) – Whether or not to load a smaller debug version of the
dataset

6.1. Module contents 31

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Multimodal Transformers

Returns This tuple contains the training, validation and testing sets. The val dataset is None if there
is no val.csv in folder_path

Return type tuple of tabular_torch_dataset.TorchTextDataset

load_data_into_folds(data_csv_path, num_splits, validation_ratio, text_cols, tokenizer, la-
bel_col, label_list=None, categorical_cols=None, numerical_cols=None,
sep_text_token_str=' ', categorical_encode_type='ohe', numeri-
cal_transformer_method='quantile_normal', empty_text_values=None, re-
place_empty_text=None, max_token_length=None, debug=False)

Function to load tabular and text data from a specified folder into folds

Loads train, test and/or validation text and tabular data from specified csv path into num_splits of train,
val and test for Kfold cross validation. Performs categorical and numerical data preprocessing if specified.
data_csv_path is a path to

Parameters

• data_csv_path (str) – The path to the csv containing the data

• num_splits (int) – The number of cross validation folds to split the data into.

• validation_ratio (float) – A float between 0 and 1 representing the percent of the
data to hold as a consistent validation set.

• text_cols (list of str) – The column names in the dataset that contain text from
which we want to load

• tokenizer (transformers.tokenization_utils.
PreTrainedTokenizer) – HuggingFace tokenizer used to tokenize the input
texts as specifed by text_cols

• label_col (str) – The column name of the label, for classification the column should
have int values from 0 to n_classes-1 as the label for each class. For regression the column
can have any numerical value

• label_list (list of str, optional) – Used for classification; the names of the classes
indexed by the values in label_col.

• categorical_cols (list of str, optional) – The column names in the dataset that
contain categorical features. The features can be already prepared numerically, or could be
preprocessed by the method specified by categorical_encode_type

• numerical_cols (list of str, optional) – The column names in the dataset that con-
tain numerical features. These columns should contain only numeric values.

• sep_text_token_str (str, optional) – The string token that is used to separate
between the different text columns for a given data example. For Bert for example, this
could be the [SEP] token.

• categorical_encode_type (str, optional) – Given categorical_cols, this
specifies what method we want to preprocess our categorical features. choices: [‘ohe’,
‘binary’, None] see encode_features.CategoricalFeatures for more details

• numerical_transformer_method (str, optional) – Given numerical_cols,
this specifies what method we want to use for normalizing our numerical data. choices:
[‘yeo_johnson’, ‘box_cox’, ‘quantile_normal’, None] see https://scikit-learn.org/stable/
auto_examples/preprocessing/plot_all_scaling.html for more details

• empty_text_values (list of str, optional) – specifies what texts should be consid-
ered as missing which would be replaced by replace_empty_text

32 Chapter 6. multimodal_transformers.data

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Multimodal Transformers

• replace_empty_text (str, optional) – The value of the string that will replace
the texts that match with those in empty_text_values. If this argument is None then the text
that match with empty_text_values will be skipped

• max_token_length (int, optional) – The token length to pad or truncate to on
the input text

• debug (bool, optional) – Whether or not to load a smaller debug version of the
dataset

Returns This tuple contains three lists representing the splits of training, validation and testing sets.
The length of the lists is equal to the number of folds specified by num_splits

Return type tuple of list of tabular_torch_dataset.TorchTextDataset

6.1. Module contents 33

Multimodal Transformers

34 Chapter 6. multimodal_transformers.data

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

35

Multimodal Transformers

36 Chapter 7. Indices and tables

PYTHON MODULE INDEX

m
multimodal_transformers.data, 29
multimodal_transformers.model.tabular_combiner,

13
multimodal_transformers.model.tabular_config,

15
multimodal_transformers.model.tabular_modeling_auto,

16
multimodal_transformers.model.tabular_transformers,

17

37

Multimodal Transformers

38 Python Module Index

INDEX

A
AlbertWithTabular (class in multi-

modal_transformers.model.tabular_transformers),
17

AutoModelWithTabular (class in multi-
modal_transformers.model.tabular_modeling_auto),
16

B
BertWithTabular (class in multi-

modal_transformers.model.tabular_transformers),
19

C
config_class (XLMRobertaWithTabular attribute),

24

D
DistilBertWithTabular (class in multi-

modal_transformers.model.tabular_transformers),
20

F
forward() (AlbertWithTabular method), 17
forward() (BertWithTabular method), 19
forward() (DistilBertWithTabular method), 21
forward() (RobertaWithTabular method), 22
forward() (TabularFeatCombiner method), 14
forward() (XLMWithTabular method), 24
forward() (XLNetWithTabular method), 25
from_config() (AutoModelWithTabular class

method), 16
from_pretrained() (AutoModelWithTabular class

method), 16

G
get_labels() (TorchTabularTextDataset method), 29

L
load_data() (in module multi-

modal_transformers.data), 29

load_data_from_folder() (in module multi-
modal_transformers.data), 30

load_data_into_folds() (in module multi-
modal_transformers.data), 32

M
module

multimodal_transformers.data, 29
multimodal_transformers.model.tabular_combiner,

13
multimodal_transformers.model.tabular_config,

15
multimodal_transformers.model.tabular_modeling_auto,

16
multimodal_transformers.model.tabular_transformers,

17
multimodal_transformers.data

module, 29
multimodal_transformers.model.tabular_combiner

module, 13
multimodal_transformers.model.tabular_config

module, 15
multimodal_transformers.model.tabular_modeling_auto

module, 16
multimodal_transformers.model.tabular_transformers

module, 17

R
RobertaWithTabular (class in multi-

modal_transformers.model.tabular_transformers),
22

T
TabularConfig (class in multi-

modal_transformers.model.tabular_config),
15

TabularFeatCombiner (class in multi-
modal_transformers.model.tabular_combiner),
13

TorchTabularTextDataset (class in multi-
modal_transformers.data), 29

39

Multimodal Transformers

X
XLMRobertaWithTabular (class in multi-

modal_transformers.model.tabular_transformers),
23

XLMWithTabular (class in multi-
modal_transformers.model.tabular_transformers),
24

XLNetWithTabular (class in multi-
modal_transformers.model.tabular_transformers),
25

40 Index

	Installation
	Introduction by Example
	Combine Methods
	Colab Example
	multimodal_transformers.model
	multimodal_transformers.data
	Indices and tables
	Python Module Index
	Index

