Multimodal Transformers

Ken Gu

Jul 27, 2021
A toolkit for incorporating multimodal data on top of text data for classification and regression tasks. This toolkit is heavily based off of HuggingFace Transformers. It adds a combining module that takes the outputs of the transformers in addition to categorical and numerical features to produce rich multimodal features for downstream classification/regression layers. Given a pretrained transformer, the parameters of the combining module and transformer are trained based on the supervised task.

See its documentation for specific details regarding HuggingFace transformer models, configs, and tokenizers.
CHAPTER ONE

INSTALLATION

This package was written with python3.7. It depends on PyTorch and HuggingFace Transformers 3.0. and up.

1.1 Install

```
pip install multimodal-transformers
```
This guide covers how to use the transformer with tabular models in your own project. We use a `BertWithTabular` model as an example.

- How to Initialize Transformer With Tabular Models
- Forward Pass of Transformer With Tabular Models
- Modifications: Only One Type of Tabular Feature or No Tabular Features
- Inference

For a working script see the [github repository](https://github.com).

2.1 How to Initialize Transformer With Tabular Models

The models which support tabular features are located in `multimodal_transformers.model.tabular_transformers`. These adapted transformer modules expect the same transformer config instances as the ones from HuggingFace. However, expect a `multimodal_transformers.model.TabularConfig` instance specifying the configs.

Say for example we had categorical features of dim 9 and numerical features of dim 5.

```python
from transformers import BertConfig
from multimodal_transformers.model import BertWithTabular
from multimodal_transformers.model import TabularConfig

bert_config = BertConfig.from_pretrained('bert-base-uncased')

tabular_config = TabularConfig(
    combine_feat_method='attention_on_cat_and_numerical_feats',  # change this to specify the method of combining tabular data
    cat_feat_dim=9,  # need to specify this
    numerical_feat_dim=5,  # need to specify this
    num_labels=2,  # need to specify this, assuming our task is binary
    use_num_bn=False,
)

bert_config.tabular_config = tabular_config
```

(continues on next page)
Multimodal Transformers

In fact for any HuggingFace transformer model supported in `multimodal_transformers.model` we can initialize it using `multimodal_transformers.model.AutoModelWithTabular` to leverage any community trained transformer models.

```python
from transformers import AutoConfig
from multimodal_transformers.model import AutoModelWithTabular
from multimodal_transformers.model import TabularConfig

hf_config = AutoConfig.from_pretrained('ipuneetrathore/bert-base-cased-finetuned-finBERT')
tabular_config = TabularConfig(
    combine_feat_method='attention_on_cat_and_numerical_feats',  # change this to
    # specify the method of combining tabular data
    cat_feat_dim=9,  # need to specify this
    numerical_feat_dim=5,  # need to specify this
    num_labels=2,  # need to specify this, assuming our task is binary
)
hf_config.tabular_config = tabular_config

model = AutoModelWithTabular.from_pretrained('ipuneetrathore/bert-base-cased-finetuned-finBERT', config=hf_config)
```

2.2 Forward Pass of Transformer With Tabular Models

During the forward pass we pass HuggingFace’s normal transformer inputs as well as our categorical and numerical features.

The forward pass returns

- `torch.FloatTensor` of shape `(1,)`: The classification (or regression if `tabular_config.num_labels==1`) loss
- `torch.FloatTensor` of shape `(batch_size, tabular_config.num_labels)`: The classification (or regression if `tabular_config.num_labels==1`) scores (before SoftMax)
- `list` of `torch.FloatTensor`: The outputs of each layer of the final classification layers. The 0th index of this list is the combining module’s output

The following example shows a forward pass on two data examples:

```python
from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

text_1 = "HuggingFace is based in NYC"
text_2 = "Where is HuggingFace based?"
model_inputs = tokenizer([text_1, text_2])

# 5 numerical features
numerical_feat = torch.rand(2, 5).float()
# 9 categorical features
```
categorical_feat = torch.tensor([[0, 0, 0, 1, 0, 1, 0, 1, 0], [1, 0, 0, 0, 1, 0, 1, 0, 0]]).float()
labels = torch.tensor([1, 0])
model_inputs['cat_feats'] = categorical_feat
model_inputs['num_feats'] = numerical_feat
model_inputs['labels'] = labels
loss, logits, layer_outs = model(**model_inputs)

We can also pass in the arguments explicitly

```python
loss, logits, layer_outs = model(
    model_inputs['input_ids'],
    token_type_ids=model_inputs['token_type_ids'],
    labels=labels,
    cat_feats=categorical_feat,
    numerical_feats=numerical_feat
)
```

2.3 Modifications: Only One Type of Tabular Feature or No Tabular Features

If there are no tabular features, the models basically default to the ForSequenceClassification models from HuggingFace. We must specify combine_feat_method='text_only' in multimodal_transformers.model.TabularConfig. During the forward pass we can simply pass the text related inputs

```python
loss, logits, layer_outs = model(
    model_inputs['input_ids'],
    token_type_ids=model_inputs['token_type_ids'],
    labels=labels,
)
```

If only one of the features is available, we first must specify a combine_feat_method that supports only one type of feature available. See supported methods for more details. When initializing our tabular config we specify the dimensions of the feature we have. For example if we only have categorical features

```python
tabular_config = TabularConfig(
    combine_feat_method='attention_on_cat_and_numerical_feats',  # change this to
    cat_feat_dim=9,  # need to specify this
    num_labels=2,  # need to specify this, assuming our task is binary classification
)
```

During the forward pass, we also pass only the tabular data that we have.

```python
loss, logits, layer_outs = model(
    model_inputs['input_ids'],
    token_type_ids=model_inputs['token_type_ids'],
    labels=labels,
    cat_feats=categorical_feat,
)
```
2.4 Inference

During inference we do not need to pass the labels and we can take the logits from the second output from the forward pass of the model.

```python
with torch.no_grad():
    _, logits, classifier_outputs = model(
        model_inputs['input_ids'],
        token_type_ids=model_inputs['token_type_ids'],
        cat_feats=categorical_feat,
        numerical_feats=numerical_feat
    )
```
This page explains the methods that are supported by `multimodal_transformers.tabular_combiner`. TabularFeatCombiner. See the table for details.

If you have rich categorical and numerical features any of the attention, gating, or weighted sum methods are worth trying.

The following describes each supported method and whether or not it requires both categorical and numerical features.

This table shows the the equations involved with each method. First we define some notation

- `equation` denotes the combined multimodal features
- `equation` denotes the output text features from the transformer
- `equation` denotes the categorical features
- `equation` denotes the numerical features
- `equation` denotes a MLP parameterized by `equation`
- `equation` denotes a weight matrix
- `equation` denotes a scalar bias
Here is an example of a colab notebook for running the toolkit involving data preparation, training, and evaluation:

1. Training a BertWithTabular Model for Clothing Review Recommendation Prediction
5.1 Tabular Feature Combiner

```python
class TabularFeatCombiner(tabular_config):
    Bases: torch.nn.modules.module.Module

    Combiner module for combining text features with categorical and numerical features. The methods of combining, specified by `tabular_config.combine_feat_method` are shown below. \( m \) denotes the combined multimodal features, \( x \) denotes the output text features from the transformer, \( c \) denotes the categorical features, \( t \) denotes the numerical features, \( h_{\Theta} \) denotes a MLP parameterized by \( \Theta \), \( W \) denotes a weight matrix, and \( b \) denotes a scalar bias.

    * **text_only**

      \[ m = x \]

    * **concat**

      \[ m = x \| c \| n \]

    * **mlp_on_categorical_then_concat**

      \[ m = x \| h_{\Theta}(c) \| n \]

    * **individual_mlps_on_cat_and_numerical_feats_then_concat**
```
\[m = x \parallel h_{\Theta_c}(c) \parallel h_{\Theta_n}(n) \]

- **mlp_on_concatenated_cat_and_numerical_feats_then_concat**

\[m = x \parallel h_{\Theta}(c \parallel n) \]

- **attention_on_cat_and_numerical_feats** self attention on the text features

\[m = \alpha x, x W_x x + \alpha x, c W_c c + \alpha x, n W_n n \]

where \(W_x \) is of shape \((\text{out_dim}, \text{text_feat_dim})\), \(W_c \) is of shape \((\text{out_dim}, \text{cat_feat_dim})\), \(W_n \) is of shape \((\text{out_dim}, \text{num_feat_dim})\), and the attention coefficients \(\alpha_{i,j} \) are computed as

\[
\alpha_{i,j} = \frac{\exp(\text{LeakyReLU}(a^T [W_i x_i \parallel W_j x_j]))}{\sum_{k \in \{x, c, n\}} \exp(\text{LeakyReLU}(a^T [W_i x_i \parallel W_k x_k]))}.
\]

- **gating_on_cat_and_num_feats_then_sum** sum of features gated by text features. Inspired by the gating mechanism introduced in Integrating Multimodal Information in Large Pretrained Transformers

\[m = x + \alpha h \]

\[h = g_c \odot (W_c c) + g_n \odot (W_n n) + b_n \]

\[\alpha = \min(\frac{\|x\|_2}{\|h\|_2} \times \beta, 1) \]

where \(\beta \) is a hyperparameter, \(W_c \) is of shape \((\text{out_dim}, \text{cat_feat_dim})\), \(W_n \) is of shape \((\text{out_dim}, \text{num_feat_dim})\). and the gating vector \(g_i \) with activation function \(R \) is defined as

\[g_i = R(W_{gi}[i \parallel x] + b_i) \]

where \(W_{gi} \) is of shape \((\text{out_dim}, \text{i_feat_dim} + \text{text_feat_dim})\)

- **weighted_feature_sum_on_transformer_cat_and_numerical_feats**

\[m = x + W_{c'} \odot W_c c + W_{n'} \odot W_n n \]

Parameters

- **tabular_config** (TabularConfig) – Tabular model configuration class with all the parameters of the model.
forward(text_feats, cat_feats=None, numerical_feats=None)

Parameters

- **text_feats** (torch.FloatTensor of shape (batch_size, text_out_dim)) – The tensor of text features. This is assumed to be the output from a HuggingFace transformer model
- **cat_feats** (torch.FloatTensor of shape (batch_size, cat_feat_dim), optional, defaults to None) – The tensor of categorical features
- **numerical_feats** (torch.FloatTensor of shape (batch_size, numerical_feat_dim), optional, defaults to None) – The tensor of numerical features

Returns

A tensor representing the combined features

Return type torch.FloatTensor of shape (batch_size, final_out_dim)

5.2 Tabular Config

class TabularConfig(num_labels, mlp_division=4, combine_feat_method='text_only', mlp_dropout=0.1, numerical_bn=True, use_simple_classifier=True, mlp_act='relu', gating_beta=0.2, numerical_feat_dim=0, cat_feat_dim=0, **kwargs)

Bases: object

Config used for tabular combiner

Parameters

- **mlp_division** (int) – how much to decrease each MLP dim for each additional layer
- **combine_feat_method** (str) – The method to combine categorical and numerical features. See TabularFeatCombiner for details on the supported methods.
- **mlp_dropout** (float) – dropout ratio used for MLP layers
- **numerical_bn** (bool) – whether to use batchnorm on numerical features
- **use_simple_classifier** (bool) – whether to use single layer or MLP as final classifier
- **mlp_act** (str) – the activation function to use for finetuning layers
- **gating_beta** (float) – the beta hyperparameters used for gating tabular data see the paper Integrating Multimodal Information in Large Pretrained Transformers for details
- **numerical_feat_dim** (int) – the number of numerical features
- **cat_feat_dim** (int) – the number of categorical features
5.3 AutoModel with Tabular

class AutoModelWithTabular
 Bases: object

classmethod from_config(config)
 Instantiates one of the base model classes of the library from a configuration.

Note: Only the models in multimodal_transformers.py are implemented

Parameters config(PretrainedConfig) –

The model class to instantiate is selected based on the configuration class: see multimodal_transformers.py for supported transformer models

Examples:

```python
config = BertConfig.from_pretrained('bert-base-uncased')  # Download configuration from S3 and cache.
model = AutoModelWithTabular.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`.
```

classmethod from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
 Instantiates one of the sequence classification model classes of the library from a pre-trained model configuration. See multimodal_transformers.py for supported transformer models

The from_pretrained() method takes care of returning the correct model class instance based on the model_type property of the config object, or when it’s missing, falling back to using pattern matching on the pretrained_model_name_or_path string:

The model is set in evaluation mode by default using model.eval() (Dropout modules are deactivated) To train the model, you should first set it back in training mode with model.train()

Parameters

- pretrained_model_name_or_path – either:
 - a string with the shortcut name of a pre-trained model to load from cache or download, e.g. bert-base-uncased.
 - a string with the identifier name of a pre-trained model that was user-uploaded to our S3, e.g. dbmdz/bert-base-german-cased.
 - a path to a directory containing model weights saved using save_pretrained(), e.g. ./my_model_directory/.
 - a path or url to a tensorflow index checkpoint file (e.g. ./tf_model/model.ckpt.index). In this case, from_tf should be set to True and a configuration object should be provided as config argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

- model_args – (optional) Sequence of positional arguments: All remaining positional arguments will be passed to the underlying model’s __init__ method

- config – (optional) instance of a class derived from PretrainedConfig: Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when:
the model is a model provided by the library (loaded with the shortcut-name string of a pretrained model), or

the model was saved using save_pretrained() and is reloaded by suppling the save directory.

the model is loaded by suppling a local directory as pretrained_model_name_or_path and a configuration JSON file named config.json is found in the directory.

- **state_dict** — *(optional)* dict: an optional state dictionary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.

- **cache_dir** — *(optional)* string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used.

- **force_download** — *(optional)* boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

- **resume_download** — *(optional)* boolean, default False: Do not delete incompletely recived file. Attempt to resume the download if such a file exists.

- **proxies** — *(optional)* dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', ‘http://hostname’: ‘foo.bar:4012’}. The proxies are used on each request.

- **output_loading_info** — *(optional)* boolean: Set to True to also return a dictionary containing missing keys, unexpected keys and error messages.

- **kwargs** — *(optional)* Remaining dictionary of keyword arguments: These arguments will be passed to the configuration and the model.

Examples:

```python
model = AutoModelWithTabular.from_pretrained('bert-base-uncased')  # Download model and configuration from S3 and cache.
model = AutoModelWithTabular.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelWithTabular.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
```

5.4 Transformers with Tabular

class AlbertWithTabular (hf_model_config)

Bases: transformers.modeling_albert.AlbertForSequenceClassification

ALBERT Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module to combine categorical and numerical features with the Roberta pooled output

Parameters

- **hf_model_config** *(AlbertConfig)* — Model configuration class with all the parameters of the model. This object must also have a `tabular_config` member variable that is a `TabularConfig` instance specifying the configs for TabularFeatCombiner
The AlbertWithTabular forward method, overrides the __call__() special method.

Parameters

- **input_ids** (torch.LongTensor of shape (batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary. Indices can be obtained using transformers.AlbertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer() for details.

 What are input IDs?

- **attention_mask** (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

 What are attention masks?

- **token_type_ids** (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token.

 What are token type IDs?

- **position_ids** (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

 What are position IDs?

- **head_mask** (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

- **inputs_embeds** (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

- **output_attentions** (bool, optional, defaults to None) – If set to True, the attention tensors of all attention layers are returned. See attentions under returned tensors for more detail.

- **labels** (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the sequence classification/regression loss. Indices should
be in \([0, \ldots, \text{config.num_labels} - 1]\). If \text{config.num_labels} \equiv 1\ a\ regression\ loss\ is\ computed\ (\text{Mean-Square\ loss}),\ If\ \text{config.num_labels} > 1\ a\ classification\ loss\ is\ computed\ (\text{Cross-Entropy}).

class \text{BertWithTabular}(hf_model_config)
Bases: transformers.modeling_bert.BertForSequenceClassification

Bert Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module to combine categorical and numerical features with the Bert pooled output

Parameters

\text{hf_model_config}(\text{BertConfig}) – Model configuration class with all the parameters of the model. This object must also have a tabular_config member variable that is a TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, class_weights=None, output_attentions=None, output_hidden_states=None, cat_feats=None, numerical_feats=None)
The \text{BertWithTabular} forward method, overrides the \text{__call__}() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the \text{Module} instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters

- **input_ids** (torch.LongTensor of shape \((\text{batch_size, sequence_length})\)) – Indices of input sequence tokens in the vocabulary.

 Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

 What are input IDs?

- **attention_mask** (torch.FloatTensor of shape \((\text{batch_size, sequence_length}), \text{optional}, \text{defaults to None}\)) – Mask to avoid performing attention on padding token indices. Mask values selected in \([0, 1]\): 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

 What are attention masks?

- **token_type_ids** (torch.LongTensor of shape \((\text{batch_size, sequence_length}), \text{optional}, \text{defaults to None}\)) – Segment token indices to indicate first and second portions of the inputs. Indices are selected in \([0, 1]\): 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

 What are token type IDs?

- **position_ids** (torch.LongTensor of shape \((\text{batch_size, sequence_length}), \text{optional}, \text{defaults to None}\)) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range \([0, \text{config.max_position_embeddings} - 1]\).

 What are position IDs?

- **head_mask** (torch.FloatTensor of shape \((\text{num_heads},)\) or \((\text{num_layers, num_heads}), \text{optional}, \text{defaults to None}\)) – Mask to nullify selected heads of the self-attention modules. Mask values selected in \([0, 1]\): 1 indicates the head is not masked, 0 indicates the head is masked.
• **inputs_embeds** (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

• **encoder_hidden_states** (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

• **encoder_attention_mask** (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

• **output_attentions** (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

• **class_weights** (torch.FloatTensor of shape (tabular_config.num_labels,), optional, defaults to None) – Class weights to be used for cross entropy loss function for classification task

• **labels** (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If tabular_config.num_labels == 1 a regression loss is computed (Mean-Square loss). If tabular_config.num_labels > 1 a classification loss is computed (Cross-Entropy).

• **cat_feats** (torch.FloatTensor of shape (batch_size, tabular_config.cat_feat_dim), optional, defaults to None) – Categorical features to be passed in to the TabularFeatCombiner

• **numerical_feats** (torch.FloatTensor of shape (batch_size, tabular_config.numerical_feat_dim), optional, defaults to None) – Numerical features to be passed in to the TabularFeatCombiner

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when label is provided): Classification (or regression if tabular_config.num_labels==1) loss.

logits (torch.FloatTensor of shape (batch_size, tabular_config.num_labels)): Classification (or regression if tabular_config.num_labels==1) scores (before SoftMax).

classifier_layer_outputs(list of torch.FloatTensor): The outputs of each layer of the final classification layers. The 0th index of this list is the combining module’s output

Return type tuple comprising various elements depending on configuration and inputs

class DistilBertWithTabular(hf_model_config)

Bases: transformers.modeling_distilbert.DistilBertForSequenceClassification

DistilBert Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module to combine categorical and numerical features with the Roberta pooled output
Parameters `hf_model_config` ([DistilBertConfig](#)) – Model configuration class with all the parameters of the model. This object must also have a `tabular_config` member variable that is a `TabularConfig` instance specifying the configs for `TabularFeatCombiner`.

forward(*input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, class_weights=None, cat_feats=None, numerical_feats=None*)

The `DistilBertWithTabular` `forward` method, overrides the `__call__()` special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the `Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters

- **input_ids** ([torch.LongTensor](#) of shape `(batch_size, sequence_length)`) – Indices of input sequence tokens in the vocabulary. Indices can be obtained using `transformers.DistilBertTokenizer`. See `transformers.PreTrainedTokenizer.encode()` and `transformers.PreTrainedTokenizer.__call__()` for details.

 What are input IDs?

- **attention_mask** ([torch.FloatTensor](#) of shape `(batch_size, sequence_length)`, `optional`, defaults to `None`) – Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for tokens that are NOT MASKED, `0` for MASKED tokens.

 What are attention masks?

- **head_mask** ([torch.FloatTensor](#) of shape `(num_heads,)` or `(num_layers, num_heads)`, `optional`, defaults to `None`) – Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1` indicates the head is not masked, `0` indicates the head is masked.

- **inputs_embeds** ([torch.FloatTensor](#) of shape `(batch_size, sequence_length, hidden_size)`, `optional`, defaults to `None`) – Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model’s internal embedding lookup matrix.

- **output_attentions** ([bool](#), `optional`, defaults to `None`) – If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under returned tensors for more detail.

- **class_weights** ([torch.FloatTensor](#) of shape `(tabular_config.num_labels,)`, `optional`, defaults to `None`) – Class weights to be used for cross entropy loss function for classification task.

- **labels** ([torch.LongTensor](#) of shape `(batch_size,)`, `optional`, defaults to `None`) – Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `tabular_config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `tabular_config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Multimodal Transformers

• **cat_feats** (torch.FloatTensor of shape (batch_size, tabular_config.cat_feat_dim), optional, defaults to None) – Categorical features to be passed in to the TabularFeatCombiner

• **numerical_feats** (torch.FloatTensor of shape (batch_size, tabular_config.numerical_feat_dim), optional, defaults to None) – Numerical features to be passed in to the TabularFeatCombiner

Returns

- **loss** (torch.FloatTensor of shape (1,), optional, returned when label is provided): Classification (or regression if tabular_config.num_labels==1) loss.
- **logits** (torch.FloatTensor of shape (batch_size, tabular_config.num_labels)): Classification (or regression if tabular_config.num_labels==1) scores (before SoftMax).
- **classifier_layer_outputs** (list of torch.FloatTensor): The outputs of each layer of the final classification layers. The 0th index of this list is the combining module’s output

Return type tuple comprising various elements depending on configuration and inputs

```python
class RobertaWithTabular(hf_model_config)
    Bases: transformers.modeling_roberta.RobertaForSequenceClassification

    Roberta Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module to combine categorical and numerical features with the Roberta pooled output

    Parameters
    hf_model_config (RobertaConfig) -- Model configuration class with all the parameters of the model. This object must also have a tabular_config member variable that is a TabularConfig instance specifying the configs for TabularFeatCombiner

    forward (input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, class_weights=None, cat_feats=None, numerical_feats=None)

    The RobertaWithTabular forward method, overrides the __call__() special method.
```

Note: Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters

- **input_ids** (torch.LongTensor of shape (batch_size, sequence_length)) -- Indices of input sequence tokens in the vocabulary.

 Indices can be obtained using transformers.RobertaTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

 What are input IDs?

- **attention_mask** (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) -- Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

 What are attention masks?
- **token_type_ids** (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a *sentence A* token, 1 corresponds to a *sentence B* token.

 What are token type IDs?

- **position_ids** (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings – 1].

 What are position IDs?

- **head_mask** (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

- **inputs_embeds** (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

- **output_attentions** (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

- **class_weights** (torch.FloatTensor of shape (tabular_config.num_labels,), optional, defaults to None) – Class weights to be used for cross entropy loss function for classification task

- **labels** (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels – 1]. If tabular_config.num_labels == 1 a regression loss is computed (Mean-Square loss). If tabular_config.num_labels > 1 a classification loss is computed (Cross-Entropy).

- **cat_feats** (torch.FloatTensor of shape (batch_size, tabular_config.cat_feat_dim), optional, defaults to None) – Categorical features to be passed in to the TabularFeatCombiner

- **numerical_feats** (torch.FloatTensor of shape (batch_size, tabular_config.numerical_feat_dim), optional, defaults to None) – Numerical features to be passed in to the TabularFeatCombiner

Returns

- **loss** (torch.FloatTensor of shape (1,), optional, returned when label is provided): Classification (or regression if tabular_config.num_labels==1) loss.

- **logits** (torch.FloatTensor of shape (batch_size, tabular_config.num_labels)): Classification (or regression if tabular_config.num_labels==1) scores (before SoftMax).

- **classifier_layer_outputs** (list of torch.FloatTensor): The outputs of each layer of the final classification layers. The 0th index of this list is the combining module’s output

Return type tuple comprising various elements depending on configuration and inputs
class XLMRobertaWithTabular(hf_model_config)
Bases: multimodal_transformers.model.tabular_transformers.RobertaWithTabular

This class overrides RobertaWithTabular. Please check the superclass for the appropriate documentation alongside usage examples.

config_class
alias of transformers.configuration_xlm_roberta.XLMRobertaConfig

class XLMWithTabular(hf_model_config)
Bases: transformers.modeling_xlm.XLMForSequenceClassification

XLM Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module to combine categorical and numerical features with the Roberta pooled output

Parameters
hf_model_config (XLMConfig) – Model configuration class with all the parameters of the model. This object must also have a tabular_config member variable that is a TabularConfig instance specifying the configs for TabularFeatCombiner

forward (input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, class_weights=None, cat_feats=None, numerical_feats=None)

The XLMWithTabular forward method, overrides the __call__() special method.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters

• input_ids (torch.LongTensor of shape (batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary.

Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

What are input IDs?

• attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

What are attention masks?

• langs (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name -> language id mapping is in model.config.lang2id (dict str -> int) and the language id -> language name mapping is model.config.id2lang (dict int -> str).

See usage examples detailed in the multilingual documentation.

• token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Segment token indices to in-
dicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token.

What are token type IDs?

- **position_ids** *(torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None)* – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

What are position IDs?

- **lengths** *(torch.LongTensor of shape (batch_size,), optional, defaults to None)* – Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

- **cache** *(Dict[str, torch.FloatTensor], optional, defaults to None)* – dictionary with torch.FloatTensor that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

- **head_mask** *(torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None)* – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

- **inputs_embeds** *(torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None)* – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

- **output_attentions** *(bool, optional, defaults to None)* – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

- **labels** *(torch.LongTensor of shape (batch_size,), optional, defaults to None)* – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

```python
class XLNetWithTabular(hf_model_config)
Bases: transformers.modeling_xlnet.XLNetForSequenceClassification

XLNet Model transformer with a sequence classification/regression head as well as a TabularFeatCombiner module to combine categorical and numerical features with the Roberta pooled output.

Parameters hf_model_config (XLNetConfig) – Model configuration class with all the parameters of the model. This object must also have a tabular_config member variable that is a TabularConfig instance specifying the configs for TabularFeatCombiner

forward(input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, class_weights=None, cat_feats=None, numerical_feats=None)
```

The XLNetWithTabular forward method, overrides the __call__() special method.
Multimodal Transformers

Note: Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters

- **input_ids** (torch.LongTensor of shape (batch_size, sequence_length)) – Indices of input sequence tokens in the vocabulary.

 Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

 What are input IDs?

- **attention_mask** (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

 What are attention masks?

- **mems** (List[torch.FloatTensor] of length config.n_layers) – Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see mems output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as input ids as they have already been computed. use_cache has to be set to True to make use of mems.

- **perm_mask** (torch.FloatTensor of shape (batch_size, sequence_length, sequence_length), optional, defaults to None) – Mask to indicate the attention pattern for each input token with values selected in [0, 1]: If perm_mask[k, i, j] = 0, i attend to j in batch k; if perm_mask[k, i, j] = 1, i does not attend to j in batch k. If None, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation).

- **target_mapping** (torch.FloatTensor of shape (batch_size, num_predict, sequence_length), optional, defaults to None) – Mask to indicate the output tokens to use. If target_mapping[k, i, j] = 1, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation).

- **token_type_ids** (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token. The classifier token should be represented by a 2.

 What are token type IDs?

- **input_mask** (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on padding token indices. Negative of attention_mask, i.e. with 0 for real tokens and 1 for padding. Kept for compatibility with the original code base. You can only uses one of input_mask and attention_mask Mask values selected in [0, 1]: 1 for tokens that are MASKED, 0 for tokens that are NOT MASKED.
• **head_mask** (torch.FloatTensor of shape (num_heads,)) or (num_layers, num_heads), *optional*, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

• **inputs_embeds** (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), *optional*, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

• **use_cache** (bool) – If use_cache is True, mems are returned and can be used to speed up decoding (see mems). Defaults to True.

• **output_attentions** (bool, *optional*, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

• **labels** (torch.LongTensor of shape (batch_size,)), *optional*, defaults to None) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).
The data module includes two functions to help load your own datasets into multimodal_transformers.data.tabular_torch_dataset.TorchTabularTextDataset which can be fed into a torch.utils.data.DataLoader. The multimodal_transformers.data.tabular_torch_dataset.TorchTabularTextDataset's __getitem__ method's outputs can be directly fed to the forward pass to a model in multimodal_transformers.model.tabular_transformers.

Note: You may still need to move the __getitem__ method outputs to the right gpu device.

6.1 Module contents

class TorchTabularTextDataset(encodings, categorical_feats, numerical_feats, labels=None, df=None, label_list=None, class_weights=None)

Bases: torch.utils.data.dataset.Dataset

TorchDataset wrapper for text dataset with categorical features and numerical features

Parameters

- **encodings** (transformers.BatchEncoding) – The output from encode_plus() and batch_encode() methods (tokens, attention_masks, etc) of a transformers.PreTrainedTokenizer
- **categorical_feats** (numpy.ndarray, of shape (n_examples, categorical feat dim), optional, defaults to None) – An array containing the preprocessed categorical features
- **numerical_feats** (numpy.ndarray, of shape (n_examples, numerical feat dim), optional, defaults to None) – An array containing the preprocessed numerical features
- **labels** (class: list` or numpy.ndarray, optional, defaults to None): The labels of the training examples
- **class_weights** (numpy.ndarray, of shape (n_classes), optional, defaults to None) – Class weights used for cross entropy loss for classification
- **df** (pandas.DataFrame, optional, defaults to None) – Model configuration class with all the parameters of the model. This object must also have a tabular_config member variable that is a TabularConfig instance specifying the configs for TabularFeatCombiner

get_labels()

returns the label names for classification
load_data(data_df, text_cols, tokenizer, label_col, label_list=None, categorical_cols=None, numerical_cols=None, sep_text_token_str=' ', categorical_encode_type='ohe', numerical_transformer=None, empty_text_values=None, replace_empty_text=None, max_token_length=None, debug=False)

Function to load a single dataset given a pandas DataFrame

Given a DataFrame, this function loads the data to a `torch_dataset.TorchTextDataset` object which can be used in a `torch.utils.data.DataLoader`.

Parameters

- **data_df** (pd.DataFrame) – The DataFrame to convert to a TorchTextDataset
- **text_cols** (list of str) – the column names in the dataset that contain text from which we want to load
- **tokenizer** (transformers.tokenization_utils.PreTrainedTokenizer) – HuggingFace tokenizer used to tokenize the input texts as specified by text_cols
- **label_col** (str) – The column name of the label, for classification the column should have int values from 0 to n_classes-1 as the label for each class. For regression the column can have any numerical value
- **label_list** (list of str, optional) – Used for classification; the names of the classes indexed by the values in label_col.
- **categorical_cols** (list of str, optional) – The column names in the dataset that contain categorical features. The features can be already prepared numerically, or could be preprocessed by the method specified by categorical_encode_type
- **numerical_cols** (list of str, optional) – The column names in the dataset that contain numerical features. These columns should contain only numeric values.
- **sep_text_token_str** (str, optional) – The string token that is used to separate between the different text columns for a given data example. For Bert for example, this could be the [SEP] token.
- **categorical_encode_type** (str, optional) – Given categorical_cols, this specifies what method we want to preprocess our categorical features. choices: [‘ohe’, ‘binary’, None] see encode_features.CategoricalFeatures for more details
- **numerical_transformer** (sklearn.base.TransformerMixin) – The sklearn numeric transformer instance to transform our numerical features
- **empty_text_values** (list of str, optional) – Specifies what texts should be considered as missing which would be replaced by replace_empty_text
- **replace_empty_text** (str, optional) – The value of the string that will replace the texts that match with those in empty_text_values. If this argument is None then the text that match with empty_text_values will be skipped
- **max_token_length** (int, optional) – The token length to pad or truncate to on the input text
- **debug** (bool, optional) – Whether or not to load a smaller debug version of the dataset

Returns The converted dataset

Return type tabular_torch_dataset.TorchTextDataset
load_data_from_folder (folder_path, text_cols, tokenizer, label_col, label_list=None, categorical_cols=None, numerical_cols=None, sep_text_token_str=' ', categorical_encode_type='ohe', numerical_transformer_method='quantile_normal', empty_text_values=None, replace_empty_text=None, max_token_length=None, debug=False)

Function to load tabular and text data from a specified folder

Loads train, test and/or validation text and tabular data from specified folder path into TorchTextDataset class and does categorical and numerical data preprocessing if specified. Inside the folder, there is expected to be a train.csv, and test.csv (and if given val.csv) containing the training, testing, and validation sets respectively.

Parameters

- **folder_path** (str) – The path to the folder containing train.csv, and test.csv (and if given val.csv)
- **text_cols** (list of str) – The column names in the dataset that contain text from which we want to load
- **tokenizer** (transformers.tokenization_utils.PreTrainedTokenizer) – HuggingFace tokenizer used to tokenize the input texts as specified by text_cols
- **label_col** (str) – The column name of the label, for classification the column should have int values from 0 to n_classes-1 as the label for each class. For regression the column can have any numerical value
- **label_list** (list of str, optional) – Used for classification; the names of the classes indexed by the values in label_col.
- **categorical_cols** (list of str, optional) – The column names in the dataset that contain categorical features. The features can be already prepared numerically, or could be preprocessed by the method specified by categorical_encode_type
- **numerical_cols** (list of str, optional) – The column names in the dataset that contain numerical features. These columns should contain only numeric values.
- **sep_text_token_str** (str, optional) – The string token that is used to separate between the different text columns for a given data example. For Bert for example, this could be the [SEP] token.
- **categorical_encode_type** (str, optional) – Given categorical_cols, this specifies what method we want to preprocess our categorical features. choices: [‘ohe’, ‘binary’, None] see encode_features.CategoricalFeatures for more details
- **numerical_transformer_method** (str, optional) – Given numerical_cols, this specifies what method we want to use for normalizing our numerical data. choices: ['yeo_johnson', 'box_cox', 'quantile_normal', None] see https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html for more details
- **empty_text_values** (list of str, optional) – specifies what texts should be considered as missing which would be replaced by replace_empty_text
- **replace_empty_text** (str, optional) – The value of the string that will replace the texts that match with those in empty_text_values. If this argument is None then the text that match with empty_text_values will be skipped
- **max_token_length** (int, optional) – The token length to pad or truncate to on the input text
- **debug** (bool, optional) – Whether or not to load a smaller debug version of the dataset
Multimodal Transformers

Returns This tuple contains the training, validation and testing sets. The val dataset is None if there is no val.csv in folder_path

Return type tuple of tabular_torch_dataset.TorchTextDataset

`load_data_into_folds` *(data_csv_path, num_splits, validation_ratio, text_cols, tokenizer, label_col, label_list=None, categorical_cols=None, numerical_cols=None, sep_text_token_str=' ', categorical_encode_type='ohe', numerical_transformer_method='quantile_normal', empty_text_values=None, replace_empty_text=None, max_token_length=None, debug=False)*

Function to load tabular and text data from a specified folder into folds

Loads train, test and/or validation text and tabular data from specified csv path into num_splits of train, val and test for Kfold cross validation. Performs categorical and numerical data preprocessing if specified.

data_csv_path is a path to

Parameters

- **data_csv_path** *(str)* – The path to the csv containing the data
- **num_splits** *(int)* – The number of cross validation folds to split the data into.
- **validation_ratio** *(float)* – A float between 0 and 1 representing the percent of the data to hold as a consistent validation set.
- **text_cols** *(list of str)* – The column names in the dataset that contain text from which we want to load
- **tokenizer** *(transformers.tokenization_utils.PreTrainedTokenizer)* – HuggingFace tokenizer used to tokenize the input texts as specified by text_cols
- **label_col** *(str)* – The column name of the label, for classification the column should have int values from 0 to n_classes-1 as the label for each class. For regression the column can have any numerical value
- **label_list** *(list of str, optional)* – Used for classification; the names of the classes indexed by the values in label_col.
- **categorical_cols** *(list of str, optional)* – The column names in the dataset that contain categorical features. The features can be already prepared numerically, or could be preprocessed by the method specified by categorical_encode_type
- **numerical_cols** *(list of str, optional)* – The column names in the dataset that contain numerical features. These columns should contain only numeric values.
- **sep_text_token_str** *(str, optional)* – The string token that is used to separate between the different text columns for a given data example. For Bert for example, this could be the [SEP] token.
- **categorical_encode_type** *(str, optional)* – Given categorical_cols, this specifies what method we want to preprocess our categorical features. choices: [‘ohe’, ‘binary’, None] see encode_features.CategoricalFeatures for more details
- **empty_text_values** *(list of str, optional)* – specifies what texts should be considered as missing which would be replaced by replace_empty_text
• **replace_empty_text**(str, *optional*) – The value of the string that will replace the texts that match with those in empty_text_values. If this argument is None then the text that match with empty_text_values will be skipped

• **max_token_length**(int, *optional*) – The token length to pad or truncate to on the input text

• **debug**(bool, *optional*) – Whether or not to load a smaller debug version of the dataset

Returns This tuple contains three lists representing the splits of training, validation and testing sets. The length of the lists is equal to the number of folds specified by *num_splits*

Return type tuple of list of `tabular_torch_dataset.TorchTextDataset`
INDICES AND TABLES

- genindex
- modindex
- search
multimodal_transformers.data, 29
multimodal_transformers.model.tabular_combiner, 13
multimodal_transformers.model.tabular_config, 15
multimodal_transformers.model.tabular_modeling_auto, 16
multimodal_transformers.model.tabular_transformers, 17
Multimodal Transformers

X

XLMRobertaWithTabular (class in multi-modal_transformers.model.tabular_transformers), 23

XLMWithTabular (class in multi-modal_transformers.model.tabular_transformers), 24

XLNetWithTabular (class in multi-modal_transformers.model.tabular_transformers), 25